Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Anal Chem ; 95(13): 5532-5541, 2023 04 04.
Article in English | MEDLINE | ID: covidwho-2300795

ABSTRACT

There has been a continuous effort to fabricate a fast, sensitive, and inexpensive system for influenza virus detection to meet the demand for effective screening in point-of-care testing. Herein, we report a sialic acid (SA)-conjugated graphene field-effect transistor (SA-GFET) sensor designed using α2,3-linked sialic acid (3'-SA) and α2,6-linked sialic acid (6'-SA) for the detection and discrimination of the hemagglutinin (HA) protein of the H5N2 and H1N1 viruses. 3'-SA and 6'-SA specific for H5 and H1 influenza were used in the SA-GFET to capture the HA protein of the influenza virus. The net charge of the captured viral sample led to a change in the electrical current of the SA-GFET platform, which could be correlated to the concentration of the viral sample. This SA-GFET platform exhibited a highly sensitive response in the range of 101-106 pfu mL-1, with a limit of detection (LOD) of 101 pfu mL-1 in buffer solution and a response time of approximately 10 s. The selectivity of the SA-GFET platform for the H1N1 and H5N2 influenza viruses was verified by testing analogous respiratory viruses, i.e., influenza B and the spike protein of SARS-CoV-2 and MERS-CoV, on the SA-GFET. Overall, the results demonstrate that the developed dual-channel SA-GFET platform can potentially serve as a highly efficient and sensitive sensing platform for the rapid detection of infectious diseases.


Subject(s)
COVID-19 , Graphite , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N2 Subtype , Influenza A virus , Influenza, Human , Humans , Influenza A virus/metabolism , N-Acetylneuraminic Acid/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Graphite/metabolism , Influenza A Virus, H5N2 Subtype/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Hemagglutinins/metabolism , Hemagglutinin Glycoproteins, Influenza Virus
2.
Nat Commun ; 13(1): 4054, 2022 07 13.
Article in English | MEDLINE | ID: covidwho-1931408

ABSTRACT

Establishment of zoonotic viruses, causing pandemics like the Spanish flu and Covid-19, requires adaptation to human receptors. Pandemic influenza A viruses (IAV) that crossed the avian-human species barrier switched from binding avian-type α2-3-linked sialic acid (2-3Sia) to human-type 2-6Sia receptors. Here, we show that this specificity switch is however less dichotomous as generally assumed. Binding and entry specificity were compared using mixed synthetic glycan gradients of 2-3Sia and 2-6Sia and by employing a genetically remodeled Sia repertoire on the surface of a Sia-free cell line and on a sialoglycoprotein secreted from these cells. Expression of a range of (mixed) 2-3Sia and 2-6Sia densities shows that non-binding human-type receptors efficiently enhanced avian IAV binding and entry provided the presence of a low density of high affinity avian-type receptors, and vice versa. Considering the heterogeneity of sialoglycan receptors encountered in vivo, hetero-multivalent binding is physiologically relevant and will impact evolutionary pathways leading to host adaptation.


Subject(s)
COVID-19 , Influenza A virus , Influenza Pandemic, 1918-1919 , Influenza, Human , Animals , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Influenza A virus/metabolism , N-Acetylneuraminic Acid/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Receptors, Virus/metabolism
3.
Biochemistry (Mosc) ; 86(7): 800-817, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1594970

ABSTRACT

COVID-19, a new human respiratory disease that has killed nearly 3 million people in a year since the start of the pandemic, is a global public health challenge. Its infectious agent, SARS-CoV-2, differs from other coronaviruses in a number of structural features that make this virus more pathogenic and transmissible. In this review, we discuss some important characteristics of the main SARS-CoV-2 surface antigen, the spike (S) protein, such as (i) ability of the receptor-binding domain (RBD) to switch between the "standing-up" position (open pre-fusion conformation) for receptor binding and the "lying-down" position (closed pre-fusion conformation) for immune system evasion; (ii) advantage of a high binding affinity of the RBD open conformation to the human angiotensin-converting enzyme 2 (ACE2) receptor for efficient cell entry; and (iii) S protein preliminary activation by the intracellular furin-like proteases for facilitation of the virus spreading across different cell types. We describe interactions between the S protein and cellular receptors, co-receptors, and antagonists, as well as a hypothetical mechanism of the homotrimeric spike structure destabilization that triggers the fusion of the viral envelope with the cell membrane at physiological pH and mediates the viral nucleocapsid entry into the cytoplasm. The transition of the S protein pre-fusion conformation to the post-fusion one on the surface of virions after their treatment with some reagents, such as ß-propiolactone, is essential, especially in relation to the vaccine production. We also compare the COVID-19 pathogenesis with that of severe outbreaks of "avian" influenza caused by the A/H5 and A/H7 highly pathogenic viruses and discuss the structural similarities between the SARS-CoV-2 S protein and hemagglutinins of those highly pathogenic strains. Finally, we touch on the prospective and currently used COVID-19 antiviral and anti-pathogenetic therapeutics, as well as recently approved conventional and innovative COVID-19 vaccines and their molecular and immunological features.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Pandemics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/epidemiology , COVID-19/genetics , COVID-19/metabolism , Humans , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza A virus/metabolism , Influenza, Human/epidemiology , Influenza, Human/genetics , Influenza, Human/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
4.
Antioxid Redox Signal ; 35(13): 1081-1092, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1306508

ABSTRACT

Aims: Influenza A virus hemagglutinin (HA) binding to sialic acid on lung epithelial cells triggers membrane fusion and infection. Host thiol isomerases have been shown to play a role in influenza A virus infection, and we hypothesized that this role involved manipulation of disulfide bonds in HA. Results: Analysis of HA crystal structures revealed that three of the six HA disulfides occur in high-energy conformations and four of the six bonds can exist in unformed states, suggesting that the disulfide landscape of HA is generally strained and the bonds may be labile. We measured the redox state of influenza A virus HA disulfide bonds and their susceptibility to cleavage by vascular thiol isomerases. Using differential cysteine alkylation and mass spectrometry, we show that all six HA disulfide bonds exist in unformed states in ∼1 in 10 recombinant and viral surface HA molecules. Four of the six H1 and H3 HA bonds are cleaved by the vascular thiol isomerases, thioredoxin and protein disulphide isomerase, in recombinant proteins, which correlated with surface exposure of the disulfides in crystal structures. In contrast, viral surface HA disulfide bonds are impervious to five different vascular thiol isomerases. Innovation: It has been assumed that the disulfide bonds in mature HA protein are intact and inert. We show that all six HA disulfide bonds can exist in unformed states. Conclusion: These findings indicate that influenza A virus HA disulfides are naturally labile but not substrates for thiol isomerases when expressed on the viral surface.


Subject(s)
Disulfides/metabolism , Hemagglutinins/metabolism , Influenza A virus/chemistry , Disulfides/chemistry , Hemagglutinins/chemistry , Influenza A virus/metabolism , Models, Molecular
5.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: covidwho-1256559

ABSTRACT

Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit.


Subject(s)
Ceramides/metabolism , HIV-1/metabolism , Influenza A virus/metabolism , SARS-CoV-2/metabolism , Virus Diseases/metabolism , Virus Diseases/virology , Apoptosis/drug effects , Apoptosis/immunology , Ceramides/chemistry , Gene Expression Regulation, Viral , HIV-1/pathogenicity , Humans , Immunomodulation , Influenza A virus/pathogenicity , SARS-CoV-2/pathogenicity , Virion/growth & development , Virus Diseases/immunology , Virus Internalization , Virus Replication/drug effects , Virus Replication/immunology
6.
Crit Care Med ; 49(9): 1558-1566, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1191495

ABSTRACT

OBJECTIVES: Severe acute respiratory syndrome-related coronavirus-2 binds and inhibits angiotensin-converting enzyme-2. The frequency of acute cardiac injury in patients with coronavirus disease 2019 is unknown. The objective was to compare the rates of cardiac injury by angiotensin-converting enzyme-2-binding viruses from viruses that do not bind to angiotensin-converting enzyme-2. DATA SOURCES: We performed a systematic review of coronavirus disease 2019 literature on PubMed and EMBASE. STUDY SELECTION: We included studies with ten or more hospitalized adults with confirmed coronavirus disease 2019 or other viral pathogens that described the occurrence of acute cardiac injury. This was defined by the original publication authors or by: 1) myocardial ischemia, 2) new cardiac arrhythmia on echocardiogram, or 3) new or worsening heart failure on echocardiogram. DATA EXTRACTION: We compared the rates of cardiac injury among patients with respiratory infections with viruses that down-regulate angiotensin-converting enzyme-2, including H1N1, H5N1, H7N9, and severe acute respiratory syndrome-related coronavirus-1, to those with respiratory infections from other influenza viruses that do not bind angiotensin-converting enzyme-2, including Influenza H3N2 and influenza B. DATA SYNTHESIS: Of 57 studies including 34,072 patients, acute cardiac injury occurred in 50% (95% CI, 44-57%) of critically ill patients with coronavirus disease 2019. The overall risk of acute cardiac injury was 21% (95% CI, 18-26%) among hospitalized patients with coronavirus disease 2019. In comparison, 37% (95% CI, 26-49%) of critically ill patients with other respiratory viruses that bind angiotensin-converting enzyme-2 (p = 0.061) and 12% (95% CI, 7-22%) of critically ill patients with other respiratory viruses that do not bind angiotensin-converting enzyme-2 (p < 0.001) experienced a cardiac injury. CONCLUSIONS: Acute cardiac injury may be associated with whether the virus binds angiotensin-converting enzyme-2. Acute cardiac injury occurs in half of critically ill coronavirus disease 2019 patients, but only 12% of patients infected by viruses that do not bind to angiotensin-converting enzyme-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors , COVID-19/complications , Heart Failure/etiology , Influenza, Human/complications , Myocardial Ischemia/etiology , SARS-CoV-2/metabolism , Acute Disease , Arrhythmias, Cardiac/etiology , Down-Regulation , Humans , Influenza A virus/metabolism , Influenza B virus/metabolism
7.
Am J Respir Cell Mol Biol ; 64(6): 687-697, 2021 06.
Article in English | MEDLINE | ID: covidwho-1143104

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly become a global pandemic. In addition to the acute pulmonary symptoms of coronavirus disease (COVID-19) (the disease associated with SARS-CoV-2 infection), pulmonary and distal coagulopathies have caused morbidity and mortality in many patients. Currently, the molecular pathogenesis underlying COVID-19-associated coagulopathies are unknown. Identifying the molecular basis of how SARS-CoV-2 drives coagulation is essential to mitigating short- and long-term thrombotic risks of sick and recovered patients with COVID-19. We aimed to perform coagulation-focused transcriptome analysis of in vitro infected primary respiratory epithelial cells, patient-derived bronchial alveolar lavage cells, and circulating immune cells during SARS-CoV-2 infection. Our objective was to identify transcription-mediated signaling networks driving coagulopathies associated with COVID-19. We analyzed recently published experimentally and clinically derived bulk or single-cell RNA sequencing datasets of SARS-CoV-2 infection to identify changes in transcriptional regulation of blood coagulation. We also confirmed that the transcriptional expression of a key coagulation regulator was recapitulated at the protein level. We specifically focused our analysis on lung tissue-expressed genes regulating the extrinsic coagulation cascade and the plasminogen activation system. Analyzing transcriptomic data of in vitro infected normal human bronchial epithelial cells and patient-derived bronchial alveolar lavage samples revealed that SARS-CoV-2 infection induces the extrinsic blood coagulation cascade and suppresses the plasminogen activation system. We also performed in vitro SARS-CoV-2 infection experiments on primary human lung epithelial cells to confirm that transcriptional upregulation of tissue factor, the extrinsic coagulation cascade master regulator, manifested at the protein level. Furthermore, infection of normal human bronchial epithelial cells with influenza A virus did not drive key regulators of blood coagulation in a similar manner as SARS-CoV-2. In addition, peripheral blood mononuclear cells did not differentially express genes regulating the extrinsic coagulation cascade or plasminogen activation system during SARS-CoV-2 infection, suggesting that they are not directly inducing coagulopathy through these pathways. The hyperactivation of the extrinsic blood coagulation cascade and the suppression of the plasminogen activation system in SARS-CoV-2-infected epithelial cells may drive diverse coagulopathies in the lung and distal organ systems. Understanding how hosts drive such transcriptional changes with SARS-CoV-2 infection may enable the design of host-directed therapeutic strategies to treat COVID-19 and other coronaviruses inducing hypercoagulation.


Subject(s)
Alveolar Epithelial Cells/metabolism , Blood Coagulation Disorders/metabolism , COVID-19/metabolism , Gene Expression Regulation , SARS-CoV-2/metabolism , Signal Transduction , Transcription, Genetic , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/pathology , COVID-19/complications , COVID-19/pathology , Cell Line , Female , Humans , Influenza A virus/metabolism , Influenza, Human/complications , Influenza, Human/metabolism , Influenza, Human/pathology , Male
8.
Biomolecules ; 11(1)2020 12 24.
Article in English | MEDLINE | ID: covidwho-1067683

ABSTRACT

The medical burden caused by respiratory manifestations of influenza virus (IV) outbreak as an infectious respiratory disease is so great that governments in both developed and developing countries have allocated significant national budget toward the development of strategies for prevention, control, and treatment of this infection, which is seemingly common and treatable, but can be deadly. Frequent mutations in its genome structure often result in resistance to standard medications. Thus, new generations of treatments are critical to combat this ever-evolving infection. Plant materials and active compounds have been tested for many years, including, more recently, active compounds like flavonoids. Quercetin is a compound belonging to the flavonols class and has shown therapeutic effects against influenza virus. The focus of this review includes viral pathogenesis as well as the application of quercetin and its derivatives as a complementary therapy in controlling influenza and its related symptoms based on the targets. We also touch on the potential of this class of compounds for treatment of SARS-COV-2, the cause of new pandemic.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Disease Outbreaks , Influenza A virus/metabolism , Influenza, Human , Quercetin/therapeutic use , SARS-CoV-2/metabolism , COVID-19/epidemiology , COVID-19/metabolism , Humans , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Influenza, Human/metabolism
9.
PLoS Pathog ; 17(1): e1009033, 2021 01.
Article in English | MEDLINE | ID: covidwho-1012135

ABSTRACT

The p53 transcription factor plays a key role both in cancer and in the cell-intrinsic response to infections. The ORFEOME project hypothesized that novel p53-virus interactions reside in hitherto uncharacterized, unknown, or hypothetical open reading frames (orfs) of human viruses. Hence, 172 orfs of unknown function from the emerging viruses SARS-Coronavirus, MERS-Coronavirus, influenza, Ebola, Zika (ZIKV), Chikungunya and Kaposi Sarcoma-associated herpesvirus (KSHV) were de novo synthesized, validated and tested in a functional screen of p53 signaling. This screen revealed novel mechanisms of p53 virus interactions and two viral proteins KSHV orf10 and ZIKV NS2A binding to p53. Originally identified as the target of small DNA tumor viruses, these experiments reinforce the notion that all viruses, including RNA viruses, interfere with p53 functions. These results validate this resource for analogous systems biology approaches to identify functional properties of uncharacterized viral proteins, long non-coding RNAs and micro RNAs.


Subject(s)
Communicable Diseases, Emerging/virology , RNA Viruses/metabolism , Signal Transduction/genetics , Tumor Suppressor Protein p53/metabolism , Chikungunya virus/genetics , Chikungunya virus/metabolism , Coronavirus/genetics , Coronavirus/metabolism , Ebolavirus/genetics , Ebolavirus/metabolism , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Humans , Influenza A virus/genetics , Influenza A virus/metabolism , Open Reading Frames , RNA Viruses/genetics , Tumor Suppressor Protein p53/genetics , Viral Nonstructural Proteins/metabolism , Zika Virus/genetics , Zika Virus/metabolism
10.
Cell Prolif ; 54(1): e12953, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-991253

ABSTRACT

OBJECTIVES: Using strategy of drug repurposing, antiviral agents against influenza A virus (IAV) and newly emerging SARS-coronavirus 2 (SARS-CoV-2, also as 2019-nCoV) could be quickly screened out. MATERIALS AND METHODS: A previously reported engineered replication-competent PR8 strain carrying luciferase reporter gene (IAV-luc) and multiple pseudotyped IAV and SARS-CoV-2 virus was used. To specifically evaluate the pH change of vesicles containing IAV, we constructed an A549 cell line with endosomal and lysosomal expression of pHluorin2. RESULTS: Here, we identified azithromycin (AZ) as an effective inhibitor against multiple IAV and SARS-CoV-2 strains. We found that AZ treatment could potently inhibit IAV infection in vitro. Moreover, using pseudotyped virus model, AZ could also markedly block the entry of SARS-CoV-2 in HEK293T-ACE2 and Caco2 cells. Mechanistic studies further revealed that such effect was independent of interferon signalling. AZ treatment neither impaired the binding and internalization of IAV virions, nor the viral replication, but rather inhibited the fusion between viral and vacuolar membranes. Using a NPC1-pHluorin2 reporter cell line, we confirmed that AZ treatment could alkalize the vesicles containing IAV virions, thereby preventing pH-dependent membrane fusion. CONCLUSIONS: Overall, our findings demonstrate that AZ can exert broad-spectrum antiviral effects against IAV and SARS-CoV-2, and could be served as a potential clinical anti-SARS-CoV-2 drug in emergency as well as a promising lead compound for the development of next-generation anti-IAV drugs.


Subject(s)
Antiviral Agents/pharmacology , Azithromycin/pharmacology , COVID-19/metabolism , Influenza A virus/metabolism , Influenza, Human/metabolism , SARS-CoV-2/metabolism , Virus Internalization/drug effects , A549 Cells , COVID-19/genetics , Caco-2 Cells , HEK293 Cells , HeLa Cells , Humans , Influenza A virus/genetics , Influenza, Human/drug therapy , Influenza, Human/genetics , Interferons/genetics , Interferons/metabolism , SARS-CoV-2/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , COVID-19 Drug Treatment
11.
Anal Chem ; 93(2): 992-1000, 2021 01 19.
Article in English | MEDLINE | ID: covidwho-967361

ABSTRACT

The detection of trace protein biomarkers is essential in the diagnostic field. Protein detection systems ranging from widely used enzyme-linked immunosorbent assays to simple, inexpensive approaches, such as lateral flow immunoassays, play critical roles in medical and drug research. Despite continuous progress, current systems are insufficient for the diagnosis of diseases that require high sensitivity. In this study, we developed a heterogeneous sandwich-type sensing platform based on recombinase polymerase amplification using DNA aptamers specific to the target biomarker. Only the DNA bound to the target in the form of a heterogeneous sandwich was selectively amplified, and the fluorescence signal of an intercalating dye added before the amplification reaction was detected, thereby enabling high specificity and sensitivity. We applied this method for the detection of protein biomarkers for various infectious diseases including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and observed attomolar-level detection of biomarkers and low cross-reactivity between different viruses. We also confirmed detection efficiency of the proposed method using clinical samples. These results demonstrate that the proposed sensing platform can be used to diagnose various diseases requiring high sensitivity, specificity, and accuracy.


Subject(s)
Aptamers, Nucleotide/metabolism , Biomarkers/metabolism , Nucleic Acid Amplification Techniques/methods , Recombinases/metabolism , Antibodies, Immobilized/immunology , Antigens, Viral/chemistry , Antigens, Viral/immunology , COVID-19/diagnosis , COVID-19/virology , Communicable Diseases/diagnosis , Fluorescent Dyes/chemistry , Humans , Influenza A virus/metabolism , Influenza B virus/metabolism , Influenza, Human/diagnosis , Point-of-Care Systems , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , SELEX Aptamer Technique
12.
J Biol Chem ; 296: 100017, 2021.
Article in English | MEDLINE | ID: covidwho-910220

ABSTRACT

Through annual epidemics and global pandemics, influenza A viruses (IAVs) remain a significant threat to human health as the leading cause of severe respiratory disease. Within the last century, four global pandemics have resulted from the introduction of novel IAVs into humans, with components of each originating from avian viruses. IAVs infect many avian species wherein they maintain a diverse natural reservoir, posing a risk to humans through the occasional emergence of novel strains with enhanced zoonotic potential. One natural barrier for transmission of avian IAVs into humans is the specificity of the receptor-binding protein, hemagglutinin (HA), which recognizes sialic-acid-containing glycans on host cells. HAs from human IAVs exhibit "human-type" receptor specificity, binding exclusively to glycans on cells lining the human airway where terminal sialic acids are attached in the α2-6 configuration (NeuAcα2-6Gal). In contrast, HAs from avian viruses exhibit specificity for "avian-type" α2-3-linked (NeuAcα2-3Gal) receptors and thus require adaptive mutations to bind human-type receptors. Since all human IAV pandemics can be traced to avian origins, there remains ever-present concern over emerging IAVs with human-adaptive potential that might lead to the next pandemic. This concern has been brought into focus through emergence of SARS-CoV-2, aligning both scientific and public attention to the threat of novel respiratory viruses from animal sources. In this review, we summarize receptor-binding adaptations underlying the emergence of all prior IAV pandemics in humans, maintenance and evolution of human-type receptor specificity in subsequent seasonal IAVs, and potential for future human-type receptor adaptation in novel avian HAs.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/metabolism , Influenza in Birds/epidemiology , Influenza, Human/epidemiology , Pandemics , Polysaccharides/chemistry , Receptors, Virus/metabolism , Adaptation, Physiological , Animals , Binding Sites , Biological Coevolution , Birds/virology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/transmission , Influenza, Human/virology , Models, Molecular , Polysaccharides/metabolism , Protein Binding , Receptors, Virus/chemistry , Receptors, Virus/genetics , Respiratory System/virology , Sialic Acids/chemistry , Sialic Acids/metabolism , Species Specificity
13.
Nat Commun ; 11(1): 4252, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-741685

ABSTRACT

The 2019 novel respiratory virus (SARS-CoV-2) causes COVID-19 with rapid global socioeconomic disruptions and disease burden to healthcare. The COVID-19 and previous emerging virus outbreaks highlight the urgent need for broad-spectrum antivirals. Here, we show that a defensin-like peptide P9R exhibited potent antiviral activity against pH-dependent viruses that require endosomal acidification for virus infection, including the enveloped pandemic A(H1N1)pdm09 virus, avian influenza A(H7N9) virus, coronaviruses (SARS-CoV-2, MERS-CoV and SARS-CoV), and the non-enveloped rhinovirus. P9R can significantly protect mice from lethal challenge by A(H1N1)pdm09 virus and shows low possibility to cause drug-resistant virus. Mechanistic studies indicate that the antiviral activity of P9R depends on the direct binding to viruses and the inhibition of virus-host endosomal acidification, which provides a proof of concept that virus-binding alkaline peptides can broadly inhibit pH-dependent viruses. These results suggest that the dual-functional virus- and host-targeting P9R can be a promising candidate for combating pH-dependent respiratory viruses.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Influenza A virus/drug effects , Peptides/pharmacology , Amino Acid Sequence , Animals , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/therapeutic use , Cell Line , Endosomes/chemistry , Endosomes/drug effects , Female , Humans , Hydrogen-Ion Concentration , Influenza A virus/metabolism , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/metabolism , Peptides/chemistry , Peptides/metabolism , Peptides/therapeutic use , Protein Binding , Protein Conformation , Rhinovirus/drug effects , Rhinovirus/metabolism , Viral Load/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL